How group A Streptococcus circumvents host phagocyte defenses.

نویسندگان

  • Laura A Kwinn
  • Victor Nizet
چکیده

Group A Streptococcus (GAS) is a Gram-positive bacterium associated with a variety of mucosal and invasive human infections. GAS systemic disease reflects the diverse abilities of this pathogen to avoid eradication by phagocytic defenses of the innate immune system. Here we review how GAS can avoid phagocyte engagement, inhibit complement and antibody functions required for opsonization, impair phagocytotic uptake mechanisms, promote phagocyte lysis or apoptosis, and resist specific effectors of phagocyte killing such as antimicrobial peptides and reactive oxygen species. Understanding the molecular basis of GAS phagocyte resistance may reveal novel therapeutic targets for treatment and prevention of invasive human infections.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Subterfuge and sabotage: evasion of host innate defenses by invasive gram-positive bacterial pathogens.

The development of a severe invasive bacterial infection in an otherwise healthy individual is one of the most striking and fascinating aspects of human medicine. A small cadre of gram-positive pathogens of the genera Streptococcus and Staphylococcus stand out for their unique invasive disease potential and sophisticated ability to counteract the multifaceted components of human innate defense....

متن کامل

Sword and shield: linked group B streptococcal beta-hemolysin/cytolysin and carotenoid pigment function to subvert host phagocyte defense.

Group B Streptococcus (GBS) is a major cause of pneumonia, bacteremia, and meningitis in neonates and has been found to persist inside host phagocytic cells. The pore-forming GBS beta-hemolysin/cytolysin (betaH/C) encoded by cylE is an important virulence factor as demonstrated in several in vivo models. Interestingly, cylE deletion results not only in the loss of betaH/C activity, but also in ...

متن کامل

Sword and shield: Linked group B streptococcal -hemolysin cytolysin and carotenoid pigment function to subvert host phagocyte defense

Group B Streptococcus (GBS) is a major cause of pneumonia, bacteremia, and meningitis in neonates and has been found to persist inside host phagocytic cells. The pore-forming GBS -hemolysin cytolysin ( H C) encoded by cylE is an important virulence factor as demonstrated in several in vivo models. Interestingly, cylE deletion results not only in the loss of H C activity, but also in the loss of...

متن کامل

M1 protein allows Group A streptococcal survival in phagocyte extracellular traps through cathelicidin inhibition.

M1 protein contributes to Group A Streptococcus (GAS) systemic virulence by interfering with phagocytosis and through proinflammatory activities when released from the cell surface. Here we identify a novel role of M1 protein in the stimulation of neutrophil and mast cell extracellular trap formation, yet also subsequent survival of the pathogen within these DNA-based innate defense structures....

متن کامل

A group B streptococcal pilus protein promotes phagocyte resistance and systemic virulence.

Group B Streptococcus (GBS) is a major cause of invasive bacterial infections in newborns and certain adult populations. Surface filamentous appendages known as pili have been recently identified in GBS. However, little is known about the role of these structures in disease pathogenesis. In this study we sought to probe potential functional role(s) of PilB, the major GBS pilus protein subunit, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Future microbiology

دوره 2 1  شماره 

صفحات  -

تاریخ انتشار 2007